.d-‘--------------?--f--__-_-____ el

L]

AD=A039 537 HARRY DIAMOND LABS ACULPHI MD v F/76 20/12
CHARGE YIELD AND DOSE EFFLCTS IN MOS CAPACITORS AT 80 K.(U)
MAY 77 H E BOESCHy J M MCGARRITY

UNCLASSIFIED HOL=TR=1806

.. | NL
I|I||I| JV l ‘E:::::]’Tj.jj?[‘llllll\I||II||
AO39537

DATE
FILMED

6=77




2ES6E0VaY "







UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

REPORT oocuueurmon PAGE BEAD INSTRUCIIONS

BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.| 3. R!CIPI!NT S CATALCG NUMBER

IDL-TR- 18ﬁ6l /Y )

¥ - S Lﬁﬁ OF REPORT 8 PERIOD COVERED
/C A Charqe Yleld and Dose Effects in MOS >
( §/ ! capacitors at 8R K @ frechnlcal Repct,

S e R __~~mmmﬁt:—-

T e 8. CONTRACT OR GRANT NUMBER(s)
J\L Harold E. ’éoesch X

James M/McGarrlty

| 9. P ORMING ORGANIZATION NAME AND ADDRESS 10. ::gia&‘:OERLKEGElNTT'NPURMoﬂJEERC;' TASK
Harry Diamond Laboratories
2800 Powder Mill Road /" Program Ele: 6.27.04.H

|__Adelphi, MD 20783

11. CONTROLLING OFFICE NAME AND ADDRESS _/l )
Director (et d 4 3 stama———
Defense Nuclear Agency Dt BERCF'F 513 !
Washington, DC 20301 f
. MONITORING AGENCY NAME & ADDRESS(!! different from Controlling Oftice) 15. SECURITY CLASS. ror

Unclassified
15a, DECL ASSIFICATION/DOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, I( different from Report)

1 ) 's -

- - ] 4 /)
4_(; = -

18. SUPPLEMENTARY NOTES

HDL Project: 236T28 DRCMS Code: 6970002211556

This work was sponsored by the U.S. Army Materiel Development
and Readiness Command and the Defense Nuclear Agency under
Z99QAXT007, Work Unit 64, Unit Title "TRANSEFF."

19. XEY WORDS (C. on eide 11 ry and fy by block ber)

MOS capacitors Hole transport
Low temperature

Radiation damage

Charge yield

ABSTRACT (Cen - obdn M awd ty by block

AL A YR

The response of metal-oxide semiconductor capacitors to short-
pulse high-energy electron irradiation was measured at 80 K. It
was confirmed that ;Fdiation-generated holes are almost totally
retained in the Si0O,' layer regardless of oxide processing; this
retention was exp101ted to determine carrier yield as a function
of applied electric field. Evidence was found that the holes

1

UNCLASSIFIED ,

1 SECURITY CLASSIFICATION OF THIS PAGE (When 7-“ Entered) [

\'4
over ( [

;
P
E
¥

DD , “. » EDITION OF 1 NOV 65 |S OBSOLETE

AT

-



UNCLASSIFIED O
SECURITY CLASSIFICATION OF THIS PAGE(Whan Date Entered) J -

/, 000,000

;;:Flied field immediately

undergo an xnlt;a} isplacement under an
following cartrier generation (9.5 nm at 1 V/cm). Samples were
subjected to_pulsed irradiation at 80 K to accumulated doses above

lQE&tﬁdS(SiO") and mechanisms which limit hole buildup above

x 100 rads(510;3 were explored. Electron-hole recombination
in a/low field region of the SiO0f"was identified as an important
process and was modeled. Other mechanlsms discussed include
eledtron injection, field- and temperature-activated hole trans-
port, applied field collapse, and dielectric breakdown.

{ 5‘0/090

‘WE‘SSI(M o .-1
Secties
gy W

s

p—. 0
TISTIERANGL
Tasmmes/AwEAILITY ees

o i

2 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




A, PN TS

PR = L K

:
;
]
N
:
:
g
:
§

CONTENTS

S e S R e el P SR

SAMPLES AND EXPERIMENTAL TECHNIQUES . . « « &« & ¢ & & o . .

CHARGE=YIELE MERSURBMENT -t oiuae S0 QR g o0 i

3.1
3.2

DOSE
4.1
4.2

Field Dependence of Hole Yield . . « ¢« + ¢« ¢ &« « o « &

Initial Hole DASPLac@ment . . & e s iwiie e e e oo e

DEPENDENCE OF CHARGE BUILDUP . ¢ o o o o o o o s o o o
Measurements and ResSults . . ¢« ¢ « ¢« ¢ ¢ o o ¢ o o o &

3L de Toxn ¥ T R L e A i e AL R

N N S NS

MONONNRDN NN
.

NONNION N

Tapear BaGTON: s e e SR e e e e w e
Saturation Regronit iii, i ainie et o il ¢ wierbel et e

1 Recombination in Low-Field Region . . . . . .
2 Electron Injection at High Fields . . . . . .
3 CHOTeNRrangport b0 i e s e e e e e s
.4 Collapse of Applied Field . . . . « . ¢ « « .
5
6

Dielectric Breakdown v o .o % e e s 4 o 0 4 & s
Applicability to Higher Temperatures . . . . .

CONCLUSIONS o, v ey S mseiaiiol sl gan o S e i Rl L S s s ey e

ACRNOWEEDGEMENTS! . o v e Sl e el e Lo i6hie. & biieiie s

LIRRRIINE RN . . 0 e R e e e e .

DISTRIBUTION A el TR e I e S i e e e G il SR

FIGURES

Flatband-voltage shift and corresponding hole yield in
MOS capacitors irradiated at 80 K . . . . . ¢« « « « «

Normalized flatband-voltage shift and equivalent
flatband shift for E = 1 MV/cm and L = 100 nm for
various MOS capacitors at 80 K . . . . . . . « « « . .

Flatband-voltage shift, AvVpp, 1 ms after irradiation of
HAC p-type and n-type MOS capacitors at 80 K . . . . .

10

13
I3
15

15
16

16
21
22
23
24
24
25
25
25

27

14

14

)

i




II

CONTENTS (Cont'd)

Flatband-voltage shift, AvVpp, as function of time after
first LINAC pulse delivered to HAC dry-n MOS capacitors .

Model for limitation of charge buildup in an oxide layer

Calculated field and hole density profiles in the oxide
as a function of doge at BOK iy, o it e e Y

Comparison of model calculations and experimental results
on the flatband-voltage shift . . . . . .

TABLES

MOS Capacitor SiO; Characteristics . . . . . . . . . .

Initial Hole Displacement in MOS Samples at ~80 K . . . .

15
17

20

20

L




1. INTRODUCTION

Metal-oxide semiconductor (MOS) devices, such as charge~coupled
devices (CCD's) and MOSFET's (MOS field-effect transistors), are being
investigated for use in imaging, signal processing, and detector
preamplifier applications in which the detector and its immediately
associated electronics are operated at low temperatures (<80 K). Recent
experiments on MOS capacitors and devices at ~80 K have established
that, when hole-electron pairs are generated in the Si0O; insulating
layer by ionizing radiation, the electrons are rapidly swept out of the
oxide while the holes remain essentially immobile ("frozen in") at or
near their point of creation.!:2:.3 aAs a result, most of the holes
generated by the radiation remain in place in the oxide layer for signi-
ficant times and cause relatively large flatband- or threshold-voltage
shifts per unit dose in MOS structures. (A flatband voltage shift
of ~~1 V is expected for a 10-<krad(Si0O;) dose in a 100-nm oxide.) These
shifts threaten device operation at doses well below 100 krads. 1In
contrast to the highly process-dependent "permanent" trapping of a small
fraction (typically 1 to 10 percent) of the radiation-generated holes
observed at room temperature in "hard" MOS oxides, the retention of the
holes in Si0; at ~80 K is largely process independent2 and results from
a strongly temperature-dependent hole-transport mechanism.} 3% since
the yield of electron-hole pairs generated in an MOS oxide per unit
radiation dose is believed® to be an intrinsic property of amorphous
Sioz, this yield also should be process independent. Therefore, if
MOSFET's, MOS integrated circuits (IC's), or charge~coupled devices with
pure SiO; gate-insulator layers are operated and irradiated at low
temperatures, they will suffer relatively large oxide-charge buildups
whether or not they have been hardened to charge trapping at room
temperature.

'n, E. Boesch, Jr., F. B. McLean, J. M. McGarrity, and G. A.
Ausman, Jr., IEEE Trans. Nucl, Sci. NS=22, 2163 (1975).

2§, H. Sander and B. L. Gregory, IEEE Trans. Nucl. Sci. NS-22, 2157
(1975) .

3Rr. c. Hughes, E. P, Eer Nisse, and H. J. Stein, IEEE Trans. Nucl.
Sci. NS=22, 2227 (1975).

b, B. McLean, H. E. Boesch, Jr., and J. M. McGarrity, Hole
Transport and Recovery Characteristics of MOS Gate Insulators, IEEE
Nuclear and Space Radiation Effects Conference (July 1976).

5G. A. Ausman, Jr., and F, B. McLean, Appl. Phys. Lett. 26, 173
(1975) .




The present report discusses two related investigations of
radiation-induced charge buildup in Si0O; at ~80 K. 1In the first study,
the retention of holes at low temperature was exploited to provide a
direct measure of hole-electron pair yield per unit radiation dose at
low temperature as a function of electric field for high-energy ionizing
radiation. In the second study, the response of MOS capacitors to
short-pulse high-dose irradiation at ~80 K was investigated, and
mechanisms which impose 1limits on the oxide-charge buildup were
examined.

2. SAMPLES AND EXPERIMENTAL TECHNIQUES

Dry-grown oxide samples were provided by Hughes Aircraft Corporation
(HAC) , Northrop Research and Technology Center (NRTC), and a proprietary
source supported by the Defense Nuclear Agéncy (DNA). HAC also supplied
a wet-oxide sample representative of the process under development in
their hardened complementary-MOS/silicon-on-sapphire program. The dry
oxides were thermally grown at 1000°C and the wet oxide was
pyrogenically grown at 950°cC, usually on n-type Si (see table I).
Aluminum gate electrodes were deposited, and the resulting MOS
capacitors were bonded to headers without caps.

TABLE |.

MOS CAPACITOR SiO

CHARACTERISTICS

2
Gate Post Oxide
Identifier deposition anneal thickness
(nm)
DNA No. 1 filament A, 15 m, 72.5
800°C
DNA No. 2 filament None 65.5
HAC dry n C crucible None 87.5
HAC dry p C crucible None 87.5
HAC wet n C crucible N, 20 m, 96.5
925°C
NRTC 850 e-beam None 85
NRTC 671 e-beam None 67
NRTC 1538 e-beam None 154

| -




The experiments were performed with the electron linear accelerator
(LINAC) at the Armed Forces Radiobiology Research Institute (AFRRI).
The LINAC produced a nominal 12- to 13-MeV 1-A electron beam with a
pulse width of 4 us. Multiple pulses could be delivered to the sample
at a rate of 60/s. Sample dose per pulse was controlled by varying the
LINAC-to-sample distance. A thin-foil Cu calorimeter was used for
pulse-to-pulse electron-beam dosimetry. Teflon:CaF, thin-disc thermo-
luminescent dosimeters were employed for absolute dose measurements.
For the charge-yield experiment, the samples were mounted in a
liquid-nitrogen-cooled sample holder under vacuum.® For the high~dose
experiments, the samples were submerged directly in a liquid-nitrogen
bath to insure maximum thermal transfer. For both experiments, data
were taken only on the first pulse delivered to a sample. A fast
high~frequency capacitance-voltage (C-V) measuring apparatusel7 recorded
the preirradiation Cc-Vv characteristics and monitored these
characteristics as a function of time either after a single radiation
pulse, or, sometimes, at 1 and 12 ms after each individual radiation
pulse in a multiple-pulse burst. The MOS capacitance of the sample was
monitored by a phase-sensitive detector system operating at 5 MHz, The
C-V characteristics were recorded on oscilloscopes by monitoring the
capacitance as a 0.1l ms voltage ramp was applied to the capacitor. The
fast C-V system was intercalibrated with a Boonton 71A capacitance meter
and found capable of accurately reproducing the deep-depletion C-V
trace. From the C-V data, the radiation-induced flatband-voltage
shift, AVFB' was extracted.

3. CHARGE-YIELD MEASUREMENT

3.1 Field Dependence of Hole Yield

The field (bias) dependence of the yield of charge carriers in
Si0; was measured by Curtis, Srour and Chiu® at room temperature by a
charge~collection technique and low-enerqgy {~4-keV) electron
irradiation. Ausman and McLean® demonstrated that these results were
consistent with a hole-electron pair-creation energy LR ~18 eV/pair,

36. a, Ausman, Jr., and F. B. McLean, Appl. Phys. Lett. 26, 173
(1975).

6H. E. Boesch, Jr., Development of Apparatus for Performing Rapid
Capacitance-Voltage Measurements on MIS Structures, Harry Diamond
Laboratories TM-76-33 (December 1976).

7P, B, McLean, H. E. Boesch, Jr., P. S. Winokur, J. M. McGarrity,
and R. B. Oswald, Jr., IEEE Trans. Nucl. Sci. NS-21, 47 (1974).

80. L. curtis, Jr., J. R. Srour, and K. Y. Chiu, J. Appl. Phys. 45,
4506 (1974). Gisa




which in turn agrees with results of a model for the ionization process
based on plasmon creation. Following creation, the actual yield of free
carriers is determined by field-aided escape (i.e., aided by applied
bias) of carriers from bimolecular recombination in the high
ionization-density regions along the tracks of the incident kilovolt
electrons.” Snowden et al’ measured collected charge in SiOj; capacitors
at room temperature using high-energy ionizing radiation (30-MeV LINAC
electrons). Their results are again consistent with W, = 18 eV/pair.
In contrast to kiloelectron volt electron irradiation, which produces
high ionization-density regions along the relatively short tracks of the
incident particles, the very high energy LINAC electron beam produces
widely dispersed point ionization in the Si0, similar to that which
would be produced by energetic photon irradiation.

In this experiment, hole yield in the SiO; induced by 13-MeV
LINAC radiation pulses was measured at low temperature by the fast C-V
measurement technique. Bias voltages were applied to produce fields
from -0.6 x 10% to 4.7 x 10° Vv/cm. To insure that the
radiation-generated oxide charge did not significantly perturb the
externally applied oxide field, the dose per radiation pulse was
maintained below 3 x 103 rads (Si0j3).

The early (~1 ms after pulse) flatband voltage shift AVFB is
plotted in figure 1 as a function of oxide internal field for the DNA
No. 1 n-type samples. (Similar results were obtained for NRTC 1538A MOS
capacitors.) To correct for pulse-to-pulse dose variations, the AVpg
values have been normalized by the calorimeter readings to a nominal
dose of 2 x 103 rads (Si03). The flatband shift saturates beyond

108 V/cm and is essentially symmetrical about the zero V/cm axis.

For a uniform radiation-produced‘ oxide charge density, p,
consisting of the holes only,

2 .
- - BEC
AVFB 2e (1)

G, A. Ausman, Jr., and F. B. McLean, Appl. Phys. Lett. 26, 173
(1975).

9R. E. Leadon, D. P. Snowden, and J. M. Wilkenfeld, Radiation
Effects in Semiconductor and Insulator Materials, IRT Corporation,
Harry Diamond Laboratories CR~76~152-1 (April 1976).
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Figure 1. Flatband-voltage shift and corresponding hole yield
in MOS capacitors irradiated at 80 K.

where L is the oxide thickness in centimeters and € is the dielectric
constant in F/cm. The charge . density may in turn be expressed as a
function of oxide dose D, in rads(Si0;), using appropriate material
parameters and the electric-field-dependent fraction €£(E) of the
radiation-generated holes which escape initial recombination,

o(D,E) = 2.2 x 1075 wc;l £(E)D . (2)

Then

o 7 ~172
AVFB(D,E) (=3.23 *.107) f(E)Wo L“D . (3)

The fractional hole yield as a function of field, f(E), may be obtained
from the AV data in figure 1 by assuming that the asymptotic or
saturation value of the flatband shift above ~3 X 10° V/cm corresponds
to all the holes escaping initial recombination; i.e., f(E) = 1.0.

A BT M




Setting f(E) = 1.0 at the high field saturation value of AVpg =
-0.18 * 0.03 V yields a conversion of the experimentally determined
AVpg(E) into f(E) (right-hand scale in fig. 1). Since f(E) is now

defined, the ionization constant W, is found through equation (3) to be
(18 £ 3)ev. Using this value for wo, equations (2) and (3) become

p(D,E) = 1.22 x 10°% £(E)D , (4)
AV (D,E) = -1.79 x 108€(E)L%D . (5)

The value for WO obtained in this experiment agrees with the
results quoted earlier from the plasmon calculation and the room-
temperature low-energy electron~irradiation experiment. However, the
field dependence of the charge yield from the two experiments differs
significantly. Representative 4-keV electron-irradiation results
obtained on a hardened oxide samplelo and normalized to obtain
fractional yield are plotted in figure 1 for comparison with the present
results. Note that at fields below 10° V/cm the fractional charge yield
produced by the high-energy radiation is much greater than that produced
by the low-energy electrons. The present results are adequately
explained by a geminate recombination process in which field-dependent
rapid recombination takes place between the members of the widely
dispersed electron-hole pairs produced by the high energy radiation.*

3.2 1Initial Hole Displacement

To this point, it has been assumed that all the holes remain in
the oxide after irradiation. However, evidence has been found in this
work that a fraction of the holes escapes the oxide immediately
following generation, even at ~80 K. As indicated in a previous
paper,1 the flatband shifts obtained in identical MOS samples at
identical doses under negative and positive biases are almost, but not
quite, the same. Results obtained on a number of samples from a pair of
such measurements are recorded in table II. In each case, the negative
bias shift is 10 to 20 percent less than the positive shift. 1Initially,

*G. A. Ausman, Jr., private communication.
14, E. Boesch, Jr., F, B. McLean, J. M. McGarrity, and G. A.
Ausman, Jr., IEEE Trans., Nucl. Sci. NS5=22, 2163 (1975).
107, Rr. Srour, O. L. Curtis, Jr., and K. Y. Chiu, IEEE Trans. Nucl.
Sci. NS~21, No. 6, 73 (1974).
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TABLE Il. INITIAL HOLE DISPLACEMENT IN MOS SAMPLES AT ~80 K
AVpg+  AVEp- E Distance
bt b W W (W/em) ()

DNA No. 1 -3.5 -2.7 1.38 9.4 + 1.4
DNA No. 2 -3.3 -2.5 1.53 9.0 + 1.3
HAC dry n =27 SEs

MaE drdis B8 _2_1} 1.14 10.9 + 2.1
NRTC 850 -6.2 -5.0 1.18 9.1 + 0.8
NRTC 1538 -2.7 -2.3 0.98 12.3 + 3.3

it was assumed that this variation resulted from a decrease in the oxide
field under negative bias because of a potential drop across the
depletion region in the n-type silicon under inversion or deep~depletion
conditions. However, this potential drop virtually disappears during a
radiation pulse since the depletion region collapses very quickly as
carriers are generated in the silicon and transported through the
depletion region.9 Also, the AV relative decrease at negative biases
was exhibited by a pair of samples--HAC dry n and HAC dry p--with
identical oxide layers which were irradiated at positive and negative
biases respectively, i.e., under accumulation conditions.

The bias effect is adequately explained by postulating that the
holes are first transported through extended states in the valence band
imediately after the holes are thermalized and before they are captured
at a defect site and hopping transport begins. If at a given field the
holes are transported an average distance d in the valence band in an
oxide of tHickness L, then under positive bias and uniform field
conditions in the oxide, the hole distribution will be uniformly
displaced toward the Si. This displacement leaves the zone between x =
0 (where x is a distance from the metal electrode) and x = d depleted of
holes. Similarly, under negative bias a zone between x = L - d and x =
L (the Si interface) will be depleted. The corresponding AvFB values
are

L

AV, = =P/€ fd xdx = -p/2¢ (L2 - 42) , (6)

9r. E. Leadon, D. P. Snowden, and J. M. Wilkenfeld, Radiation
Effects 1in Semiconductor and Insulator Materials, IRT Corporation,
Harry Diamond Laboratories CR-76-152-1 (April 1976).
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L-d

Moo =-o/e [ xax = -p/2e (L - )2, (7)
0
Then
Mroe ~ Yo | L da - a) (8)
Ty AV 2 g
FB+ 1? - g%
Solving for 4,
Lf
Sy B M, (9)
N

Values for *the initial hole displacement d obtained for several
of the MOS samples are presented in table II together with error limits
calculated from the estimated probable error in the AV values. The
agreement within the error limits implies strongly that the
charge-displacement analysis is essentially correct and that d ~ 9.5 nm
is appropriate for all the materials examined. If d is assumed to be a
schubweg, i.e., d = pyyTyE where u is the intrinsic hole mobility, 1 _ is
the hole dwell time in the valence band, and E is the electric field,
then the product u 1. = 7 x 10°3 V/cm under these conditions.
Unfortunately, the measurements were not performed over a sufficient
range of electric field to determine whether d is a schubweg or perhaps
a field-independent mean free path.

The error, n, introduced by charge displacement in the measure-
ment of total hole yield under positive bias, is easily found from an
extension of the analysis above to be

3
]

2 i 2
(pL</€ AVFB+)/(°L /€)

azsL? . (10)

For a 72.7-nm oxide and 4 = 9.5 nm, n = 0.017. Therefore,
initial charge displacement had a negligible effect on the charge-yield
results (fig. 1).

12
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4. DOSE DEPENDENCE OF CHARGE BUILDUP

4.1 Measurements and Results

The response of MOS capacitors to pulsed irradiation at 80 K
was measured as a function of dose, applied bias, and time after
irradiation.

In the first experiment, a variety of MOS samples (table I)
were irradiated at various biases to doses in the 103 to 108 rad(Si0j)
range and AVFB was recorded at 1 ms after the radiation pulse.

Figure 2 shows the flatband shifts as a function of dose, with

. AVpp+ normalized by the fractional charge vyield, f(E), from figure 1,

and the geometric oxide-thickness dependence. The data points indicate
a linear variation of normalized AVFB with dose up to ~10° rads(Si0j) .

In the second experiment, HAC MOS samples were subjected to
high-dose multiple-pulse irradiation (up to 5 pulses_at a rate of 60/s;
typically 1.75 % 10° rads(Si0 ) per pulse). HAC n-type samples were
biased at 5, 10, and 20 V during irradiation, while HAC p-~type samples
were biased at the corresponding negative biases. Flatband shifts were
measured at 1 and 12 ms after each radiation pulse. The results are
plotted in figure 3. The dashed lines represent the predicted flatband
shift based on eguation (5) for £(E) = 1.0. Above 10° rads(Si0,) the
flatband shift evidently ceases to increase linearly with dose. Under
negative bias in particular, AV saturates strongly at a value near the
magnitude of the applied bias™ voltage. Under positive bias, AV
continues to increase with dose, but at a sublinear rate. Thegg
experimental results are in qualitative agreement with the observations
of Nielsen and Nichols,11 who measured charge buildup at 90 K under
cobalt-60 irradiation. :

In the third experiment, the flatband shift in HAC n-type MOS
capacitors was observed as a function of time up to 800 s after mul-
tiple-pulse irradiations to total doses from 40 to 875 krads(Si02) and
at bias voltages from 5 to 20 V. . Typical results are plotted in
figure 4. The observed early (4 ms) flatband shifts conform well to
predictions of the initial shift based on equation (5). Also, the shif+
observed following a single 40-krad (Si0z) pulse (curve E) shows little
change with time. At higher doses--150 krads (8i03) and
above~-significant decay of the flatband shift occurs, particularly at
the higher bias voltages.

11R. L. Nielsen and D. K. Nichols, IEEE Trans. Nucl., Sci. NS=-20, No.
6, 319 (1973). e
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received multiple pulses at 60 pulses/s (see legend).

4.2 Discussion

4.2.1 Linear Region

The AvFB dose-dependence results presented in figure 2 indi-
cate that, below ~10° rads (Si0j3), the charge buildup in a variety of
Si0; samples is properly predicted by equation (5). The 80~K shifts are
again shown to be large (~-10 V at 10° rads (SiOp) for 100-nm oxide) and
independent of sample source and processing details. This unifoYm AVgpg
response to pulsed radiation at low temperatures obtained with an early
C-V measurement suggests that such capacitors be used as absolute
dosimeters. Simply inverting equation (5) yields

i o7 2
D = 5.57 x 1077 AV /£(E)L? . (11)
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For applied fields above 2 X 106 V/cm the hole yield f(E) should vary
onlv slightly for various high-energy (MeV) radiation sources. In
principle, MOS capacitors may be used as dosimeters for performing
absolutﬁ dose measurements in actual device geometries and materials.

4.2.2 Saturation Region

Above about 2 X 10° rads(Si0O,) the data in figures 2 and 3
indicate that the increase of AV with dose is drastically curtailed.
Based on the experimental results and the known charge-transport pro-
perties of SiO; gate insulators, several mechanisms were identified that
can limit charge buildup in MOS structure. These processes include (1)
charge recombination in 1low-field regions in the oxide, (2) electron
injection at high-interface fields, (3) accelerated hole transport, (4)
collapse of applied field due to electron transport, and (5) dielectric
breakdown. The following sections will discuss each of these mechanisms
and the conditions wunder which each may play a role. Primary emphasis
will be placed on the recombination mechanism (1), since this process
may control MOS structure response in many situations.

4.2.2.1 Recombination in Low-Field Regions

Consider the buildup of charge in a uniformly irradiated
oxide layer of thickness L and with a potential V. applied at x = 0
(fig. 5). If the preirradiation flatband voltage V of the (nonideal)
MOS capacitor structure is assumed to result from a uniform built-in
electric field across the oxide, then V_ = Vo = Vrpor where V_ is the
applied gate bias voltage. From Poisson's equation and for a uniform
charge buildup, the electric field in the oxide is given by

E(x) = p/e (x - L/2) + Vo/L . (12)

For p < |2eV/L?|, corresponding to IAVFBI < |v |, the electric field in
the oxide is monotonic and the radiation-generated electrons are quickly
swept out without interacting with the stationary holes (fig. 5a).
Note, however, that the electric field is increasing at x = L and de-
creasing at x = 0 because of the contribution of the hole space-charge
field., At a critical dose Dgat., p approaches IZeVO/L2| (corresponding
to the magnitude of the flatband shift approaching the magnitude of the
applied potential), and the electric field at x = 0 reaches zero and
tries to go negative (fig. 5b). In this case, the electrons being swept
toward x = 0 come to a virtual halt in the zero field region and undergo
efficient recombination with the holes in the vicinity. The result is
that the hole density near x = 0 is rapidly wiped out. As irradiation
of the oxide continues (fig. 5¢), the zero point for the electric field
and, consequently, the zone of rapid recombination move deeper into the
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Figure 5. Model for limitation of charge buildup in an oxide
layer: (a) electron sweepout; (b) recombination at
the interface; (c) recombination in oxide interior.

oxide, "eating away" at the hole distribution. The oxide charge and the
total electric field continue to increase at x = L. For irradiation
under positive bias, x = 0 in figure 5 corresponds to the electrode
interface and x = L is the Si interface. In this case, the
recombination process reduces the hole density in a region well removed
from the Si interface; consequently, AVggs continues to increase as a
function of dose following the onset of recombination, but begins to
saturate. For irradiation under negative bias, x = 0 in figure 5
corresponds to the Si interface, and the onset of recombination
drastically affects any further increase in AVpp_ with added dose. 1In
fact, since the net electric field at the Si interface is pinned at zero
for o z_IZeV /L2|, the flatband shift under negative bias is similarly
pinned to AVF o= Vo The derivation of the expected dependence on dose
of the flatbagd shift, AVpp+ under positive bias, was based on this
simple model for 1limiting by recombination and also on certain

assumptions. At a given dose above Dsat the recombination process is
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~assumed to eliminate all holes in the oxide between the electrode (x =

0) and a plane X, in the oxide at which recombination is taking place.
The hole density from x to L was assumed to be uniform. Poisson's
equation for this situatioﬁ was solved to obtain the electric field:

E(x) = p/2e (2x - L e L) + Vo/(L - xr) . (13)
Imposing the condition E(x ) = 0, the quantity xr was obtained as a
function of p and the applieé potential VO:
x_(p,V) =L - (2eV._/p)" (14)
£ 050 0 z

The corresponding flatband shift is
o = L
AVFB(p,Vo) vo L(ZDVO/E)

for [avp.. | > vl . (15)

Using equation (4), we may express AVFB'as a function of oxide dose:

- - 3 A
Vo, (D,V)) =V 2.68 x 10 L[Vof(E)D]

0

for |AV

FB+I * |V0I v (16)

This relationship predicts, therefore, that the flatband shift will
increase with the square root of the dose for total flatband shifts
greater than the applied potential.

; The simple recombination model did not include such factors
as the /field dependence of charge yield in the oxide and the initial
displacement of the holes. To aid in a more careful analysis of
the AV limitation mechanisms, a computer program was written to
aimulaig the charge-buildup process in a basic MOS structure. This
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program repetitively solved Poisson's equation in the x dimension as
electron-hole pairs were generated in the oxide to obtain the charge and
electric field distribution across the oxide layer as a function of time
and dose. The generation rate for electron-hole pairs in each x
subinterval was governed by the instantaneous electric field in that
interval through the experimental yield/field relationship in figure 1.
The program allowed for initial displacement of the holes according to
the schubweg model, following which the holes were assumed to be
immobile. In keeping with the discussion above, the electrons were
assumed to be infinitely mobile; that is, they move without limit unless
stopped at a point of field reversal. Hole-electron recombination was
allowed only at field reversal points.

Representative results from this computer model are shown
in figure 6. No parameters were adjusted to obtain these results; all
the constants used in the calculation were derived from material
properties and the data in figure 1 and table II. Field and hole
density profiles in the oxide are shown for doses to 106 rads (Si0,) for
an 87.5-nm oxide under 10-V bias (HAC dry n or p). Note the apparent
concentration of the hole buildup and, consequently, the electric field
near the x = L interface (Si interface under positive bias) as the dose
increases. Other workers have also found evidence for concentration of
the holes near the Si interface under positive bias at 1low
temperature.!l.12 It is important to recognize that bunching of the
holes near the interface at 1low temperature does not require hole
transport or preferential trapping in that region, but results from the
progressive elimination of holes in the balance of the oxide.

Both the simple model and computer model predictions for
the flatband shifts in the HAC samples as a function of dose under
negative and positive bias are compared in figure 7. Also plotted are
the experimental AvV__ data from figure 3 (points). Both the simple
recombination model and the computer simulation results reproduce the
sharp limitation of AVpp to essentially the applied negative bias. The
computer calculation shows a stronger limitation of the positive bias
shift than predicted by the simple analytic model; this is primarily a
result of hole loss by initial transport which becomes significant as
the electric field near the Si interface increases and the hole region
shrinks. The 5- and 10-V computer-model curves agree with the

11g. L. Nielsen and D. K. Nichols, IEEE Trans. Nucl. Sci. N§-20, No.
6, 319 (1973).

12p, Harari, S. Wang, and B. S. H. Royce, J. Appl. Phys. 46, 1310
(1975) .
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experimental results, indicating that the recombination mechanism
accounts for most of the charge-buildup limitation in these cases. The
20-V bias data points show strong AV, saturation above 5 x 107
rads (Si0;) which is not predicted by the computer model; evidently
other processes, which will be discussed further, contribute to buildup
limitation in this case.

4.2.2.2 Electron Injection at High Fields

The computer simulation of the 20-V buildup predicted that
the total electric field at the Si interface should have increased
beyond 5 x 10® V/cm for doses above 3 x 10° rads(Si0;), while the field
in the 10-V case was predicted to remain below that value to above
8 x 10° rads(Si0;). Mitchelll3 noted that high interface fields would
be expected to cause injection of electrons into the oxide from the
silicon which would in time result in elimination of some holes in the
oxide by recombination. Powelll" measured significant electron
injection via tunneling for interface fields greater than 6 x 10° v/cm.
Since the tunneling current increased exponentially with the field, this
process could result in a strong saturation of the flatband shift above
a critical value. A crude attempt at including the electron injection
process in the computer model yielded results (dotted line, fig. 7b) in
reasonable agreement with the experimental data.

If it is assumed that a mechanism such as tunneling limits
the interface field to E(L) = Emax' then the maximum flatband shift

which can be obtained is

= - 17
AVFB+ V0 LEmax . (17)

The dose at which this flatband shift is first attained may be estimated
from the analytic recombination model introduced earlier. Substituting
equation (14) into equation (13), setting E(L) = Emax and rearranging,

el
°(Emax'vo) EEmax/ZVo 2 (18)

or, applying equation (4),

5 =¥ g2
D'.t 1.39 x 10 Emax/f(E)VO . (19)

137, P, Mitchell, IEEE Trans. Elec. Dev. ED-14, No. 11, 764 (1967).
14p, J. Powell, IEEE Trans. Nucl. Sci. NS=22, 2240 (1975).
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For an 87.5-nm oxide biased at 20 V and Emax = 6.5 X 10° V/cm, the
saturation shift of -37 Vv should be attained at 3.7 x 10° rads(5102)
For 5-V_ bias wunder similar conditions, AV & =52 Y at D -
1.9 x 10° rads(Si0Oj). Thus, field limiting is much more likely to occur

at higher applied voltage.

Ilull

4.2.2.3 Hole Transport

As noted previously, figure 4 shows that significant decay
of AVpp occurs at 80 K for pulsed irradiation of Si0O; samples to doses
above 150 krads(SiOjy). As plotted, AV for most of the samples de-
creases linearly as a function of log t (time). This logarithmic
flatband shift decay is typical of hole loss by transport through the
oxide.! Although the discussion thus far has assumed that the holes
(after an initial displacement) are essentially immobile near 80 K, hole
motion is greatly accelerated at higher fields."* The curves in figure 4
show evidence that the rate of AV decay is bias dependent: the shift
with 10-V applied, shown in curve B (four pulses of 150 krads each)
decays more rapidly than the corresponding 5-V shift (curve C); the 20-V
shift for one 150-krad pulse (curve D) although initially smaller,
decays even more rapidly. If the decay were due to electron injection,
the samples biased at 20 V which received multiple pulses should show
much more rapid charge loss since the space-charge contribution to the
interface field is greater; however, this was not observed (except in
the sample that received five 175-krad pulses (curve F), which will be
discussed). The charge-loss mechanism here is therefore believed to be
field-activated hole transport at the moderately high (2.3 X 10° V/cm)
field present across the oxide.

The sample exposed to five 175-krad pulses at 20-V bias
(fig. 4, curve F) shows relatively rapid charge loss which slows down in
about a minute. This sample was exposed to the radiation pulses while
mounted in an evacuated sample holder maintained at 80 K. The only
mechanisms for removing heat from the sample were radiation to the 80-K
surroundings (negligible at 1low temperature) and direct thermal
conduction along the two header lead wires to the socket. It is
therefore likely that this sample underwent essentially lossless heating
when subjected to 875 krads(SiOj) in 67 ms. The temperature rise was
estimated to be ~60 K from the low-temperature heat capacity of the

IH. E. Boesch, Jr., F. B. McLean, J. M. McGarrity, and G. A.
Ausman, Jr., IEEE Trans. Nucl. Sci, NS=22, 2163 (1975).

i T 3 McLean, H. E. Boesch, Jr., and J. M., McGarrity, Hole
Transport and Recovery Characteristics of MOS Gate Insulators, IEEE
Nuclear and Space Radiation Effects Conference, July 1976,
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silicon substrate and the header material. At ~140 K, hole transport is
greatly accelerated compared to its rate at 80 K. While this mechanism
does not strictly apply to devices operated at 80 K, the possibility
that devices may undergo significant transient heating in a real
radiation environment should not be ignored.

4.2.2.4 Collapse of Applied Field

Another mechanism that may 1limit oxide-charge buildup in
devices operated in pulsed nuclear environments is collapse of the bias
voltage applied across the oxide during a radiation pulse. Since the
radiation-generated electrons are mobile, their motion through the oxide
under the applied field constitutes a current which may discharge the
gate-substrate capacitance, C. If the circuit that consists of the
internal resistances of the device and any series external elements has
an equivalent series resistance R such that RC is greater than the
duration of the radiation pulse T, the bias on the device will collapse
during a radiation pulse of sufficient magnitude. For RC > 1, the
fractional charge loss on C due to electron movement only is given by

8Q/Q = 1/2pAL/CV, = pL2/2eV (20)

G

where A is the oxide area and Q is the charge on the capacitor. The
dose Dsat at which complete field collapse (discharge, corresponding
to AQ0/Q0"~71) should first occur, may be obtained through application of

equation (4):

= 57 2
Bogw ~ 8 %1077 ¢ /em)e” (21)

The corresponding saturation flatband shift is equal to the magnitude of
the applied voltage:

[av__ (@ )| ~ |-v

FB sat i (22)

5!
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4.2.2.5 Dielectric Breakdown

Another mechanism may operate if the ones discussed so far
fail to limit charge buildup in an MOS structure or if weaknesses exist
in that structure. During the course of the experiments, a few MOS
capacitors short-circuited under test, usually after receiving a high
dose (greater than 3 x 10° rads(Si0Oj)) and following irradiation at
Vo ox 200 Y Yang, Johnson, and Lampertl® have investigated a
self-enhanced breakdown mechanism in which electrons tunneling into the
Si0, in high-field regions become "hot" and generate holes by impact
ionization, thereby enhancing the 1local field and therefore the
tunneling  current. A sudden increase in interface field due to holes
generated in the oxide by a radiation pulse may trigger this failure
mechanism in an MOS structure with oxide defects (near-pinholes) which
cause local field concentration. In complex devices such as LSI logic
and CCD's, the device geometry (e.g., metallization pattern) may cause
field concentration in small areas, leading to device burnout.

4.2.2.6 Applicability to Higher Temperatures

It should be noted that most of the flatband-shift
limitation processes which have been discussed are not inherently
restricted to situations in which the device is irradiated at low
temperature. With the exception of the hole-~transport processes, the
modeling and conclusions presented are valid for any situation in which
little hole motion takes place during the radiation pulse. The data of
Hughes et al? and srour et all? jndicate that little hole motion occurs
in 1less than 10"% s even at room temperature. Therefore, most of the
processes discussed should 1limit the initial shift for room temperature
irradiations in most pulsed nuclear and flash x-ray environments. At
room temperature, rapid charge removal by hole transport ("short-term
annealing") takes place within seconds after irradiation.! The flatband
or threshold shift remaining after transport is presumably determined by
the highly processing-~dependent density of deep-hole traps in the oxide
which capture some of the transported holes. Consequently, any process
which limits the initial shift should cause a proportionate reduction in
the shift remaining at late time.

14, E. Boesch, Jr., F. B. McLean, J. M. McGarrity, and G. A,
Ausman, Jr., IEEE Trans. Nucl. Sci. NS-=22, 2163 (1975).
3R, c. Hughes, E. P. Eer Nisse, and H. J. Stein, IEEE Trans. Nucl.

Sci. NS§=22, 2227 (1975).
1057R, Srour, O. L. Curtis, Jr., and K. Y. Chiu, IEEE Trans. Nucl.

Sci. NS=-21, No. 6, 73 (1974).
15y, c. Johnson, IEEE Trans. Nucl. Sci. NS-22, 2144 (1975).
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5. CONCLUSIONS

The yield of holes produced in SiO; subjected to high-energy
short-pulse radiation at ~80 K was measured as a function of electric
field, and a hole-electron pair-creation energy of 18 eV was derived.
Early differences in AV under positive and negative biases at 80 K
imply an initial hole displacement of ~9 nm at 10° v/cm. The extremely
large flatband-voltage shifts attained in MOS structures per unit dose
at 80 K were shown to be predictable, processing independent, and linear

in dose to ~10° rads (Si0jp). At higher doses the shifts increase
sublinearly with dose, primarily as a result of recombination in a
low-field region of the oxide. Other mechanisms such as electron

injection and hole transport probably play a role as radiation-induced
space-charge fields in the oxide become large. The limitation processes
should be effective even at room temperature so long as little hole
transport takes place during irradiation.
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